Direct modulation of tracheal Cl--channel activity by 5,6- and 11,12-EET.
نویسندگان
چکیده
Using microelectrode potential measurements, we tested the involvement of Cl- conductances in the hyperpolarization induced by 5,6- and 11,12-epoxyeicosatrienoic acid (EET) in airway smooth muscle (ASM) cells. 5,6-EET and 11,12-EET (0.75 μM) caused -5.4 ± 1.1- and -3.34 ± 0.95-mV hyperpolarizations, respectively, of rabbit tracheal cells (from a resting membrane potential of -53.25 ± 0.44 mV), with significant residual repolarizations remaining after the Ca2+-activated K+ channels had been blocked by 10 nM iberiotoxin. In bilayer reconstitution experiments, we demonstrated that the EETs directly inhibit a Ca2+-insensitive Cl- channel from bovine ASM; 1 μM 5,6-EET and 1.5 μM 11,12-EET lowered the unitary current amplitude by 40 ( n = 6 experiments) and 44.7% ( n = 4 experiments), respectively. Concentration-dependent decreases in channel open probability were observed, with estimated IC50 values of 0.26 μM for 5,6- and 1.15 μM for 11,12-EET. Furthermore, pharmacomechanical tension measurements showed that both regioisomers induced significant bronchorelaxations in epithelium-denuded ASM strips. These results suggest that 5,6- and 11,12-EET can act in ASM as epithelium-derived hyperpolarizing factors.
منابع مشابه
Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity.
We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid...
متن کاملRat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase.
11,12-Epoxyeicosatrienoic acid (11,12-EET), a potent vasodilator produced by the endothelium, acts on calcium-activated potassium channels and shares biological activities with the heme oxygenase/carbon monoxide (HO/CO) system. We examined whether activation of HO mediates the dilator action of 11,12-EET, and that of the other EETs, on rat mesenteric arteries. Dose-response curves (10(-9) to 10...
متن کامل11,12,20-Trihydroxy-eicosa-8(Z)-enoic acid: a selective inhibitor of 11,12-EET-induced relaxations of bovine coronary and rat mesenteric arteries.
Arachidonic acid is metabolized to four regioisomeric epoxyeicosatrienoic acids (EETs) by cytochrome P-450. 5,6-, 8,9-, 11,12-, and 14,15-EET are equipotent in relaxing bovine coronary arteries (BCAs). Vasorelaxant effects of EETs are nonselectively antagonized by 14,15-epoxyeicosa-5(Z)-enoic acid. The 11,12-EET analogs, 20-hydroxy-11,12-epoxyeicosa-8(Z)-enoic acid (20-H-11,12-EE8ZE) and 11,12,...
متن کاملModulation of KCa3.1 Channels by Eicosanoids, Omega-3 Fatty Acids, and Molecular Determinants
BACKGROUND Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modulation of membrane ion channels. Here we studied the modulation of inte...
متن کاملFunctional reconstitution of an eicosanoid-modulated Cl- channel from bovine tracheal smooth muscle.
We describe the biochemical properties of an eicosanoid-modulated Cl- channel and assess the mechanisms by which the epoxyeicosatrienoic acids (EETs) alter both its unitary conductance and its open probability (P(o)). After a purification protocol involving wheat-germ agglutinin affinity and anion-exchange chromatography, the proteins were sequentially inserted into liposomes, which were then f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 275 3 Pt 1 شماره
صفحات -
تاریخ انتشار 1998